Controlled creation and displacement of charged domain walls in ferroelectric thin films

نویسندگان

  • L. Feigl
  • T. Sluka
  • L. J. McGilly
  • A. Crassous
  • C. S. Sandu
  • N. Setter
چکیده

Charged domain walls in ferroelectric materials are of high interest due to their potential use in nanoelectronic devices. While previous approaches have utilized complex scanning probe techniques or frustrative poling here we show the creation of charged domain walls in ferroelectric thin films during simple polarization switching using either a conductive probe tip or patterned top electrodes. We demonstrate that ferroelectric switching is accompanied - without exception - by the appearance of charged domain walls and that these walls can be displaced and erased reliably. We ascertain from a combination of scanning probe microscopy, transmission electron microscopy and phase field simulations that creation of charged domain walls is a by-product of, and as such is always coupled to, ferroelectric switching. This is due to the (110) orientation of the tetragonal (Pb,Sr)TiO3 thin films and the crucial role played by the limited conduction of the LSMO bottom electrode layer used in this study. This work highlights that charged domain walls, far from being exotic, unstable structures, as might have been assumed previously, can be robust, stable easily-controlled features in ferroelectric thin films.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orientation Dependence of the Piezoelectric Properties of Epitaxial Ferroelectric Thin Films

Title of Document: ORIENTATION DEPENDENCE OF THE PIEZOELECTRIC PROPERTIES OF EPITAXIAL FERROELECTRIC THIN FILMS Jun Ouyang, Doctor of Philosophy, 2005 Directed By: Professor Alexander. L. Roytburd Dept. of Materials Science and Engineering There are both intrinsic piezoelectric response and extrinsic piezoelectric response in ferroelectric materials. The intrinsic piezoelectric response is due ...

متن کامل

Microwave a.c. conductivity of domain walls in ferroelectric thin films

Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conduc...

متن کامل

Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3

Topological defects in ferroic materials are attracting much attention both as a playground of unique physical phenomena and for potential applications in reconfigurable electronic devices. Here, we explore electronic transport at artificially created ferroelectric vortices in BiFeO3 thin films. The creation of one-dimensional conductive channels activated at voltages as low as 1 V is demonstra...

متن کامل

Domain wall conductivity in semiconducting hexagonal ferroelectric TbMnO<sub>3</sub> thin films

Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO3 and Pb(Zr,Ti)O3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric...

متن کامل

Corrigendum: Experience enhances gamma oscillations and interhemispheric asymmetry in the hippocampus

Engineering domains in ferroelectric thin films is crucial for realizing technological applications including non-volatile data storage and solar energy harvesting. Size and shape of domains strongly depend on the electrical and mechanical boundary conditions. Here we report the origin of nonswitchable polarization under external bias that leads to energetically unfavourable head-to-head domain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016